A practical walk through formal scattering theory

Connecting bound states, resonances, and scattering states in exotic nuclei and beyond

The radial Schrödinger equation

Sebastian König, NC State University

Configuration-space wavefunctions

- consider a scattering state with momentum k and angular quantum numbers l,m
- by spherical symmetry, its wavefunction can be composed as

$$\langle \mathbf{r} | \psi_{lm,k}^{(+)}
angle = R_l(r) Y_{lm}(\hat{r}) = rac{u(r)}{r} Y_{lm}(\hat{r})$$
 (1)

• u(r) is called the reduced radial wavefunction, and it satisfies the radial Schrödinger equation

$$\left[-\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{l(l+1)}{r^2} + 2\mu \left[V(r) - E_k \right] \right] u(r) = 0 \tag{2}$$

- it is customary (and convenient) to define $U(r) = 2\mu V(r)$ and rewrite Eq. (2) entirely in terms of momentum using $k^2 = 2\mu E_k$
- more generally, Eq. (2) my involce a non-local potential V(r,r'):

$$\rightsquigarrow V(r)u(r) \longrightarrow \int \mathrm{d}r' V(r,r')u(r')$$

Free radial Schrödinger equation

• in the absence of interactions, V(r) = 0, we are left with the **free radial** Schrödinger equation:

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} - \frac{l(l+1)}{r^2} + k^2\right] u(r) = 0 \tag{3}$$

- in particular, for finite-range interactions (V(r) = 0 for r > R), this equation is exact outside the interaction range
- for short-range interactions $(V(r) \rightarrow 0$ faster than any power law) one can still assume this free equation asymptotically
- Eq. (3) has two linearly independent solutions:
 - ▶ Riccati-Bessel functions $\hat{j}_l(z) = z j_l(z) \sim z^{l+1}$ for $z \to 0$ (regular)
 - Riccati-Neumann functions $\hat{n_l}(z) = zn_l(z) \sim z^{-l}$ for $z \to 0$ (irregular)
 - (alternative: Riccati-Bessel function of the second kind, $\hat{y_l}(z) = -\hat{n_l}(z)$)
- any solution of the full radial Schrödinger equation (2) can be written as a linear combination of $\hat{j}_l(kr)$ and $\hat{n}_l(kr)$
 - ${\scriptstyle \blacktriangleright}$ coefficients in this linear combination depend only on k

Riccati functions

- the lowest-order Riccati functions are simply $\hat{j_0}(z) = \sin(z)$ and $\hat{n}_0(z) = \cos(z)$
- for l>0, both $\hat{j}_l(z)$ and $\hat{n}_l(z)$ are combinations of $\sin(z)$ and $\cos(z)$ with prefactors that are polynomials in 1/z
- asymptotically, $\hat{j}_l(z) = \sin(z l\pi/2)$, and similarly for $\hat{n_l}(z)$
 - ▶ note: several different phase conventions and notations in the literature
 - ► quoted here: Taylor, Messiah
- the Riccati-Bessel functions satisfy a simple orthogonality relation:

$$\int_0^\infty \mathrm{d}r\,\hat{j}_l(kr)\hat{j}_l(k'r) = \frac{\pi}{2}\delta(k-k') \tag{4}$$

 Riccati-Hankel functions are used to represent the radial parts of in- and outgoing spherical waves:

$${\hat h}_l^{\pm}(z) = {\hat n}_l(z) \pm {
m i} {\hat j}_l(z) \sim {
m e}^{{
m i} z} ext{ for } z o \infty$$
 (5)

Boundary conditions

- a boundary condition is needed to fully specify a solution of Eq. (2)
- any physical solution needs to satisfy u(0)=0
 - otherwise, the full wavefunction $\langle {f r} | \psi_{lm,k}^{(+)}
 angle$ would be singular at the origin
 - \blacktriangleright this fixes u(r) up to its overall normalization
 - in a numerical implementation as initial value problem, specifying the slope u'(r) at r = 0 determines the overall amplitude
- the normalized radial wavefunctions u_{l,k}(r) are defined as the set of solutions satisfying

$$\int_{0}^{\infty} \mathrm{d}r \, u_{l,k}(r) u_{l,k'}(r) = \frac{\pi}{2} \delta(k - k') \tag{6}$$

- ▶ same orthogonality relation as for Riccati-Bessel functions
- Note: Taylor denotes these solutions as $\psi_{l,p}(r)$ (with p = k)
- alternatively, one can specify the asymptotic behavior for large r
 - more relevant formally than practically
 - we'll come back to this shortly to define the so-called Jost solutions

Asymptotic behavior

• for $r
ightarrow \infty$, the normalized wavefunction can be written in the form

$$u_{l,k}(r)\sim \hat{j}_l(kr)+kf_l(k)\hat{h}_l^+(kr)$$
 (7)

- this directly reflects the physical picture:
 - incoming plane wave component
 - scattered outgoing spherical wave
- $f_l(k)$ here is the **partial-wave scattering amplitude**, related to the **partial-wave S-matrix** $S_l(k)$ via

$$f_l(p) = rac{S_l(k) - 1}{2\mathrm{i}k} = rac{\mathrm{e}^{\mathrm{i}\delta_l(k)}\sin\delta_l(k)}{k}$$
(8)

• alternatively, using the properties of the Riccati functions, one finds that

$$u_{l,k}(r)\sim \sinig(kr-l\pi/2+\delta_l(k)ig)$$

• this explains the name of the scattering phase shift $\delta_l(k)$

Scattering phase shift

- assume now we have a numerical representation of $u_{l,k}(r)$ and want to extract the phase shift $\delta_l(k)$ from the asymptotic form
- in principle, we could pick a set of points r_i , each satisfying $r_i \gg R$ and fit the numerical data to $\mathcal{N}\sin\left(kr l\pi/2 + \delta_l(k)\right)$, thus determining \mathcal{N} and $\delta_l(k)$
- an easier way uses yet another way to express the asymptotic wavefunction:

$$u_{l,k}(r) \sim \hat{n_l}(kr) - \cot \delta_l(k) \hat{j_l}(kr)$$
 (10)

• with Eq. (10) we need only find an $r_0 \gg R$ at which the wavefunction goes through zero, then

$$\cot \delta_l(k) = -\frac{\hat{n}_l(kr_0)}{\hat{j}_l(kr_0)} \tag{11}$$

- in particular, we do not actually care how our numerical solution is normalized
- r_0 is determined numerically by a root finding algorithm

Jupyter demo

Scattering phase shift from radial Schrödinger equation

The regular solution

- let us now consider a solution that is fully determined (including its normalization) by a boundary condition at the origin
- the so-called **regular solution** $\phi_{l,k}(r)$ of the radial Schrödinger equation satisfies

$$\phi_{l,k}(r)\sim \hat{j}_l(kr) ext{ for } r o 0\,, ext{ (12)}$$

i.e., $\lim_{r
ightarrow 0} \phi_{l,k}(r)/\hat{j_l}(kr) = 1$

• this solution is purely real because both the radial Schrödinger equation as well as the boundary condition are real

Note

- beware of different conventions in the literature!
- in Eq. (12) we have followed Taylor's book
 - an alternative way to write Eq. (12) is $\phi_{l,k}(0) = 0$ and $\phi_{l,k}'(0) = k$
- Newton defines a regular solution arphi(r) that satisfies arphi(0)=0 and arphi'(0)=1
 - this has the advantage of being independent of k

The Jost solutions and functions

- alternative, one can fully determine solutions by a boundary condition at infinity
- the so-called **Jost solutions** $u^{\pm}_{l,k}(r)$ are solutions of Eq. (2) that satisfy

$$\lim_{r \to \infty} \mathrm{e}^{\mp \mathrm{i} k r} u_{l,k}^{\pm}(r) = 1 \tag{13}$$

- at the origin, these are then in general not regular $(u^\pm_{l,k}(0)
 eq 0)$
- it holds that $u^-_{l,k}(r) = [u^+_{l,k}(r)]^*$
- except for p=0 , $u^+_{l,k}(r)$ and $u^-_{l,k}(r)$ are linearly independent

 \hookrightarrow regular solution can be written as linear combination of Jost solutions,

$$\phi_{l,k}(r) = a(k)u^-_{l,k}(r) + b(k)u^+_{l,k}(r) \ , \ b(k) = a(k)^*$$
 (14)

- the coefficient a(k) of $u_{l,k}^{-}(r)$ in Eq. (14), with a factor i/2 taken out, is called Jost function and denoted by $J_{l}^{+}(k)$ in the following, and $J_{l}^{+}(k)^{*} = J_{l}^{-}(k)$
- alternatively one can introduce the Jost functions as Wronskians (\rightarrow later)

S-matrix as ratio of Jost functions

• yet another way to write the normalized solution is

$$u_{l,k}(r) \underset{r o \infty}{\sim} rac{\mathrm{i}}{2} \Big[\hat{h}_l^-(kr) + S_l(k) \hat{h}_l^+(kr) \Big]$$
 (15)

• this can now be compared to the regular solution:

$$\phi_{l,k}(r) = J_l^+(k)u_{l,k}^-(r) + J_l^-(k)^*u_{l,k}^+(r)$$
(16)

• it follows that

$$S_l(k) = rac{J_l^-(k)}{J_l^+(k)} ext{ and } \phi_{l,k}(r) = J_l^+(k) u_{l,k}(r) aga{17}$$

• for scattering calculations this is not particularly relevant, but it allows us to study the analytic continuation of the S-matrix

Analytic properties of the Jost function

• we now consider the radial Schrödinger equation for complex momenta:

$$\left[rac{{
m d}^2}{{
m d}r^2} - rac{l(l+1)}{r^2} - U(r) + k^2
ight]u(r) = 0 \;,\; k\in \mathbb{C}$$

- the free solutions $\hat{j}_l(kr)$ and $\hat{n}_l(kr)$ exist for all $k\in\mathbb{C}$
 - ▶ because they are defined as power series that converge everywhere
 - \blacktriangleright in fact, they are analytic functions in k for fixed r
- based on this, it can be shown the regular solution $\phi_{l,k}(r)$ is an entire analytic function of k
- thas is, the physically relevant solutions have a **unique analytic continuation** into the complex k plane
- for the Jost functions, one finds that
 - + $J^+_l(k)$ is analytic in $\mathrm{Im}\,k>0$ and continuous in $\mathrm{Im}\,k\geq 0$
 - $J_l^+(k)^* = J_l^-(k) = J_l^+(-k)$
 - ▶ for sufficiently short ranged potentials (fall-off faster than an exponential), $J_l^+(k)$ is analytic in Im k < 0 as well

The analytic S-matrix

• recall that the S-matrix is given by the ratio of Jost functions:

$$S_l(k) = \frac{J_l^{-}(k)}{J_l^{+}(k)} = \frac{J_l^{+}(-k)}{J_l^{+}(k)}$$
(19)

- numerator and denominator are analytic in k, but they may vanish at certain points
- therefore, the S-matrix is a meromorphic function on the complex k plane
 - it may have (simple) poles

Bound states

- bound states, if supported by a given potential V, are proper eigenstates with negative eigenvalues, E < 0
- in the complex momentum plane, they are represented by $k = {
 m i}\kappa$, where $\kappa > 0$ is called the binding momentum
- setting $k=-{
 m i}\kappa$ yields negative energies as well, this case will be discussed later
- bound-state wavefunctions are normalizable: $\int_0^\infty \mathrm{d}r \, |u(r)|^2 < \infty$
- based on the general form of the regular solution,

$$\phi_{l,k}(r) = J^+_l(k) u^-_{l,k}(r) + J^-_l(k) u^+_{l,k}(r) \, ,$$

we can infer that $J_l^+(k)$ needs to vanish at $k={
m i}\kappa$, to eliminate an exponentially rising component

• the wavefunction is then directly proportional to the Jost solution $u^+_{l,k}(r)$, and

$$u(r) \mathop{\sim}\limits_{r o \infty} A \, {
m e}^{-\kappa r}$$
 (20)

Bound states as S-matrix poles

- we just derived that $J^+_l(k)=0$ for a bound state at $k={
 m i}\kappa$
- this implies that the S-matrix $S_l(k) = J_l^+(-k)/J_l^+(k)$ has a simple pole at this point in the complex k plane
- the normalized scattering wavefunction

$$u_{l,k}(r) \mathop{\sim}\limits_{r
ightarrow\infty} rac{{
m i}}{2} \Big[{\hat h}_l^-(kr) + S_l(k) {\hat h}_l^+(kr) \Big]$$

is not defined at $k={
m i}\kappa\,$ due to this pole, but the regular solution

$$\phi_{l,k}(r) = J_l^+(k) u_{l,k}^-(r) + J_l^+(k)^* u_{l,k}^+(r)$$

can be analytically continued from k>0 to $k={
m i}\kappa$ Fäldt+Wilkin, Physica Scripta 56 566 (1997)

• the residue of the pole is proportional to the **asymptotic normalization constant** that appears in the bound-sate wavefunction:

$$\operatorname{Res}_{k=\mathrm{i}\kappa}S_l(k) \sim A^2 \tag{21}$$