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Con�guration-space wavefunctions
consider a scattering state with momentum  and angular quantum numbers 

by spherical symmetry, its wavefunction can be composed as

 is called the reduced radial wavefunction, and it satisfies the radial

Schrödinger equation

it is customary (and convenient) to define  and rewrite Eq. 

entirely in terms of momentum using 

more generally, Eq.  my involce a non-local potential :

k l, m

⟨r| ⟩ = (r) ( ) = ( )ψ
(+)
lm,k Rl Ylm r̂

u(r)

r
Ylm r̂ (1)

u(r)

[− + + 2μ[V (r) − ]]u(r) = 0
d2

dr2

l(l + 1)

r2
Ek (2)

U(r) = 2μV (r) (2)

= 2μk2 Ek

(2) V (r, )r′

⇝  V (r)u(r) ⟶ ∫ d V (r, )u( )r′ r′ r′
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Free radial Schrödinger equation
in the absence of interactions, , we are left with the free radial

Schrödinger equation:

Eq.  has two linearly independent solutions:

any solution of the full radial Schrödinger equation  can be written as a linear

combination of  and 

V (r) = 0

[ − + ]u(r) = 0
d2

dr2

l(l + 1)

r2
k2 (3)

in particular, for finite-range interactions (  for ), this equation is

exact outside the interaction range

► V (r) = 0 r > R

for short-range interactions (  faster than any power law) one can still

assume this free equation asymptotically

► V (r) → 0

(3)

Riccati-Bessel functions  for  (regular)► (z) = z (z) ∼jl̂ jl zl+1 z → 0

Riccati-Neumann functions  for  (irregular)► (z) = z (z) ∼nl̂ nl z−l z → 0

(alternative: Riccati-Bessel function of the second kind, )► (z) = − (z)yl̂ nl̂

(2)

(kr)jl̂ (kr)nl̂

coefficients in this linear combination depend only on ► k
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Riccati functions
the lowest-order Riccati functions are simply  and 

for , both  and  are combinations of  and  with

prefactors that are polynomials in 

asymptotically, , and similarly for 

the Riccati-Bessel functions satisfy a simple orthogonality relation:

Riccati-Hankel functions are used to represent the radial parts of in- and outgoing

spherical waves:

(z) = sin(z)j0̂ (z) = cos(z)n̂0

l > 0 (z)jl̂ (z)nl̂ sin(z) cos(z)

1/z

(z) = sin(z − lπ/2)jl̂ (z)nl̂

note: several different phase conventions and notations in the literature► 

quoted here: Taylor, Messiah► 

dr (kr) ( r) = δ(k − )∫
∞

0
jl̂ jl̂ k′ π

2
k′ (4)

(z) = (z) ± i (z) ∼  for z → ∞ĥ
±

l nl̂ jl̂ eiz (5)
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Boundary conditions
a boundary condition is needed to fully specify a solution of Eq. 

any physical solution needs to satisfy 

the normalized radial wavefunctions  are defined as the set of solutions

satisfying

alternatively, one can specify the asymptotic behavior for large 

(2)

u(0) = 0

otherwise, the full wavefunction  would be singular at the origin► ⟨r| ⟩ψ
(+)
lm,k

this fixes  up to its overall normalization► u(r)

in a numerical implementation as initial value problem, specifying the slope 

at  determines the overall amplitude

► (r)u′

r = 0

(r)ul,k

dr (r) (r) = δ(k − )∫
∞

0

ul,k ul,k′
π

2
k′ (6)

same orthogonality relation as for Riccati-Bessel functions► 

Note: Taylor denotes these solutions as  (with )► (r)ψl,p p = k

r

more relevant formally than practically► 

we'll come back to this shortly to define the so-called Jost solutions► 
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Asymptotic behavior
for , the normalized wavefunction can be written in the form

this directly reflects the physical picture:

 here is the partial-wave scattering amplitude, related to the partial-wave

S-matrix  via

alternatively, using the properties of the Riccati functions, one finds that

this explains the name of the scattering phase shift 

r → ∞

(r) ∼ (kr) + k (k) (kr)ul,k jl̂ fl ĥ
+

l (7)

incoming plane wave component► 

scattered outgoing spherical wave► 

(k)fl

(k)Sl

(p) = =fl

(k) − 1Sl

2ik

sin (k)ei (k)δl δl

k
(8)

(r) ∼ sin (kr − lπ/2 + (k))ul,k δl (9)

(k)δl
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Scattering phase shift
assume now we have a numerical representation of  and want to extract the

phase shift  from the asymptotic form

in principle, we could pick a set of points , each satisfying  and fit the

numerical data to , thus determining  and 

an easier way uses yet another way to express the asymptotic wavefunction:

with Eq.  we need only find an  at which the wavefunction goes

through zero, then

in particular, we do not actually care how our numerical solution is normalized

 is determined numerically by a root finding algorithm

(r)ul,k

(k)δl

ri ≫ Rri

N sin (kr − lπ/2 + (k))δl N (k)δl

(r) ∼ (kr) − cot (k) (kr)ul,k nl̂ δl jl̂ (10)

(10) ≫ Rr0

cot (k) = −δl

(k )nl̂ r0

(k )jl̂ r0

(11)

r0
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Jupyter demo
Scattering phase shift from radial Schrödinger equation
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The regular solution
let us now consider a solution that is fully determined (including its normalization)

by a boundary condition at the origin

the so-called regular solution  of the radial Schrödinger equation satisfies

i.e., 

this solution is purely real because both the radial Schrödinger equation as well as

the boundary condition are real

Note

beware of different conventions in the literature!

in Eq.  we have followed Taylor's book

Newton defines a regular solution  that satisfies  and 

(r)ϕl,k

(r) ∼ (kr) for r → 0 ,ϕl,k jl̂ (12)

(r)/ (kr) = 1limr→0 ϕl,k jl̂

(12)

an alternative way to write Eq.  is  and ► (12) (0) = 0ϕl,k (0) = kϕ′
l,k

φ(r) φ(0) = 0 (0) = 1φ′

this has the advantage of being independent of ► k
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The Jost solutions and functions
alternative, one can fully determine solutions by a boundary condition at infinity

the so-called Jost solutions  are solutions of Eq.  that satisfy

at the origin, these are then in general not regular ( )

it holds that 

except for ,  and  are linearly independent 

 regular solution can be written as linear combination of Jost solutions,

the coefficient  of  in Eq. , with a factor  taken out, is called

Jost function and denoted by  in the following, and 

alternatively one can introduce the Jost functions as Wronskians (  later)

(r)u±
l,k (2)

(r) = 1lim
r→∞

e∓ikru±
l,k (13)

(0) ≠ 0u±
l,k

(r) = [ (r)u−
l,k u+

l,k ]∗

p = 0 (r)u+
l,k (r)u−

l,k

↪

(r) = a(k) (r) + b(k) (r) ,  b(k) = a(kϕl,k u−
l,k u+

l,k )∗ (14)

a(k) (r)u−
l,k (14) i/2

(k)J +
l

(k = (k)J +
l

)∗ J −
l

→
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S-matrix as ratio of Jost functions
yet another way to write the normalized solution is

this can now be compared to the regular solution:

it follows that

for scattering calculations this is not particularly relevant, but it allows us to study

the analytic continuation of the S-matrix

(r) [ (kr) + (k) (kr)]ul,k ∼
r→∞

i

2
ĥ

−

l Sl ĥ
+

l (15)

(r) = (k) (r) + (k (r)ϕl,k J +
l

u−
l,k J −

l
)∗u+

l,k (16)

(k) =  and  (r) = (k) (r)Sl

(k)J −
l

(k)J +
l

ϕl,k J +
l

ul,k (17)
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Analytic properties of the Jost function
we now consider the radial Schrödinger equation for complex momenta:

the free solutions  and  exist for all 

based on this, it can be shown the regular solution  is an entire analytic

function of 

thas is, the physically relevant solutions have a unique analytic continuation into

the complex  plane

for the Jost functions, one finds that

[ − − U(r) + ]u(r) = 0 ,  k ∈ C
d2

dr2

l(l + 1)

r2
k2 (18)

(kr)jl̂ (kr)nl̂ k ∈ C

because they are defined as power series that converge everywhere► 

in fact, they are analytic functions in  for fixed ► k r

(r)ϕl,k

k

k

 is analytic in  and continuous in ► (k)J +
l

Im k > 0 Im k ≥ 0

► (k = (k) = (−k)J +
l )∗ J −

l J +
l

for sufficiently short ranged potentials (fall-off faster than an exponential), 

is analytic in  as well

► (k)J +
l

Im k < 0
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The analytic S-matrix
recall that the S-matrix is given by the ratio of Jost functions:

numerator and denominator are analytic in , but they may vanish at certain points

therefore, the S-matrix is a meromorphic function on the complex  plane

(k) = =Sl

(k)J
−
l

(k)J
+
l

(−k)J
+
l

(k)J
+
l

(19)

k

k

it may have (simple) poles► 

Im

Re

k

bound states

scattering

resonances

virtual states
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Bound states
bound states, if supported by a given potential , are proper eigenstates with

negative eigenvalues, 

in the complex momentum plane, they are represented by , where  is

called the binding momentum

setting  yields negative energies as well, this case will be discussed later

bound-state wavefunctions are normalizable: 

based on the general form of the regular solution,

we can infer that  needs to vanish at , to eliminate an exponentially

rising component

the wavefunction is then directly proportional to the Jost solution , and

V

E < 0

k = iκ κ > 0

k = −iκ

dr |u(r) < ∞∫
∞

0
|2

(r) = (k) (r) + (k) (r) ,ϕl,k J +
l

u−
l,k J −

l
u+

l,k

(k)J +
l k = iκ

(r)u+
l,k

u(r) A∼
r→∞

e−κr (20)
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Fäldt+Wilkin, Physica Scripta 56 566 (1997)

Bound states as S-matrix poles
we just derived that  for a bound state at 

this implies that the S-matrix  has a simple pole at this

point in the complex  plane

the normalized scattering wavefunction

is not defined at  due to this pole, but the regular solution

can be analytically continued from  to 

the residue of the pole is proportional to the asymptotic normalization constant

that appears in the bound-sate wavefunction:

(k) = 0J +
l

k = iκ

(k) = (−k)/ (k)Sl J +
l

J +
l

k

(r) [ (kr) + (k) (kr)]ul,k ∼
r→∞

i

2
ĥ

−

l Sl ĥ
+

l

k = iκ

(r) = (k) (r) + (k (r)ϕl,k J +
l

u−
l,k J +

l
)∗u+

l,k

k > 0 k = iκ

(k) ∼Resk=iκSl A2 (21)
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