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Scattering setup

® we consider two particles with masses m; and my at positions r{ and ry

® we assume that the interaction does not depend on absolute particle positions

® then we can neglect the overall center-of-mass motion and work only with the
relative coordinate r =r; — ro and reduced mass u = mims/(mi + m2)

e for the two particles scattering off one another, we physically expect that the
wavefunction describing their relative motion is given as a sum of an incoming plane
wave and an outgoing spherical scattered wave:
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® all physics information is contained in the scattering amplitude fj(6)



Free Hamiltonian

e the free Hamiltonian Hj is an important reference operator
> differential operator (~ d*/dr?) in configuration space
» diagonal multiplicative operator in momentum space

® it has a purely continuous spectrum of plane-wave states:

Hlk) = ;‘7|k> (2)

» this is for a two-body system with relative momentum k and reduced mass u

Note

® the plane-wave states k are not elements of the physical Hilbert space

> (rlk) = T is not a normalizable wavefunction (¢ L?(R?))

strictly one should work with wave packets |¢) ~ [d*pg(p)|p)

nevertheless it is convenient and permissible to work with plane-wave states because
every element of the Hilbert space can be expanded in them (Fourier transform!)
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Interaction potential

® we will consider generic potentials V' written as operators
® we assume these potentials to be time independent, but they may in principle
depend on energy, V =V (E)

® taking matrix elements gives a concrete representation, for example:
V(r',r) = (r'|[V]r)

® the most intuitive (and familiar) potentials are local and spherically symmetric in
coordinate space: V(r',r) = V(r)6®) (r — '), with 7 = |r|



Interaction potential

® we will consider generic potentials V' written as operators
® we assume these potentials to be time independent, but they may in principle
depend on energy, V =V (E)

® taking matrix elements gives a concrete representation, for example:
V(r',r) = (r'|[V]r)

® the most intuitive (and familiar) potentials are local and spherically symmetric in
coordinate space: V(r/,r) = V(r)6® (r — '), with r = |r|

® in the following, we will work in momentum space

e then V(p',p) = (p’|V|p) is related to V(r/,r) by Fourier transformation

® we typically project onto fixed partial waves, denoted by [

® for local potentials, this leads to the following expression:
Ve p) =4r [ drr i)V,
0

where j;(2) it the I-th spherical Bessel function



Partial-wave projected potentials

e numerically, it is better to use Riccati-Bessel functions j;(z) = zji(2)
® this explicitly reflects the cancellation of the singularity at » =0

Viel,p) = ;*—7; /0 " dr ji V)i (or) (4)

Python implementation

# lib/potential.py
from scipy.integrate import quad

class LocalPotential (Potential):
# [...]

# Specific subclasses implement call (self, r)

def get(self, ell, p, q):
return 4.0 * np.pi / (q * p) * quad( \
lambda r: riccati j(ell, p * r) * self(r) * riccati j(ell, q * r), \
0.0, np.inf \
)[0]
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Plane-wave boundary condition

consider the stationary Schrédinger equation: H|¢) = El) with H=Hy+V

this equation alone does not specify a boundary condtion for solutions ¥(r) = (r|)
a scattering state should be such that for V'— 0, |¢) — |k)

® moreover, the state should be one that evolved from a free state in the infinite past



Interlude: time dependence

e the full Schrédinger equation is i% 1¥(t)) = H|y(t)) = (Ho + V) |(t))

® Green's functions solve the time dependence:

> this is the free retarded Green's function

» advanced Green's functions vanish for t > 0

> full Green's functions are defined analogously with Hy — H in Eq. (5)
» sometimes these operators are denoted by Uy(t) and U(t)

e time dependence of waves is conventionally written ~ e ¥

+ikr

— e represent in- and outgoing spherical waves, respectively

® (Gy(2) is the Fourier tranform Gy (E) of Gy(t), analytically continued into the
whole complex energy plane
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Interlude: adiabatic switching

e define a free in state that was equal to the exact interacting state in the infinite
past:

(1)) = lim iGy") (¢ —¢)[4()) (6)
® this allows us to write down a formal solution using the full Green's function:

$(t)) = [¢m()) + lim [ dte "GO (t —)V]gun(t)) (7)
® if the states monochromatic (fixed definite energy), the damping factor e with
e — 07 is required in Eq. (7)
e approximately this can be interpreted as multiplying the potential V' with e~
adibatically switching it off in the infinite past
® when wave packets are used to represent proper physical scattering states, such
damping factors are not necessary; their presence otherwise permits the convenience

of working with simple plane-wave states



Plane-wave boundary condition

consider the stationary Schrédinger equation: H|¢) = El) with H=Hy+V

this equation alone does not specify a boundary condtion for solutions ¥(r) = (r|)
a scattering state should be such that for V'— 0, |¢) — |k)

® moreover, the state should be one that evolved from a free state in the infinite past
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Plane-wave boundary condition

® consider the stationary Schrédinger equation: H|y) = E|¢) with H=Hy+V

® this equation alone does not specify a boundary condtion for solutions ¥(r) = (r|¢)
® a scattering state should be such that for V— 0, |[¢) — |k)

® moreover, the state should be one that evolved from a free state in the infinite past

® both conditions can be enforced with the ansatz
YLy = k) + (Bx — Ho +1e) V]l (8)

with Ex = p?/(2u)
® this is the Lippmann-Schwinger equation for the scattering state |¢1(<+)>

Notes
e free Green's function Go(2) = (2 — Hp) ™' appears in Eq. (8) with z = Ey +ic

® ¢ — 0 is implied in all equations, this implements the adiabatic switching
® |inear equation becomes an integral equation when projected onto a concrete
representation
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The Lippmann-Schwinger equation

e consider further Eq. (8) and apply V' from the left:

VIglD) = VIK) + VGo (B +ie)VIyL") (9)

® define an operator T' via V|¢l(:r)> =T|k)

» for now, this merely assumes the existence of such an operator
» it will be justified later

® using the definition of T', we can write:
Tk) =V|k)+ VGy(Ex +ie)T k) (10)
® this represents the Lippmann-Schwinger equation for the operator T'

Notes

e since k is arbitrary in Eq. (10), we postulate at the operator level: T =V + VGT
o T =T(Ex +ic) carries an implicit energy dependence via Gy
® alternative form: T'=V 4+ TGyV (seen to be equivalent by iteration)
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The T-matrix

® in practice, we want an explicit representation of T'
e we apply (p| from the left and define T'(Ex + ie; p, k) = (p|T(Ex + ie)|k)

® this is called the T-matrix, and it satisfies
(p|T|k) = (p|Vk) + (p|VGo(Ex +ie)T'|k) (11)

® Eq. (11) involves the momentum-space potential V(p,k) = (p|V k)
® to solve Eq. (11), we need to fully write out the second term on the right
> insert complete sets of momentum states
> note that Green's function is diagonal: (q|Gy(z)|q’) = Go(2;q)d®) (q —q')

T(Ek + i€; P, k) — V(p7 k)

3
N / (;‘)13 V(p,q)Go(Bi +ig; Q)T (Bx +i5;q,k)  (12)

® this integral equation can be solved numerically via discretization
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Momentum discretization

Numerical quadrature

® a quadrature rule is a set of mesh points p; together with associated weights w;
such that for a function f(p) it holds that

b N
/ f(p)dp ~ Zwif(pi) (13)

> the interval boundaries may be among the p; (closed rule) or not (open rule)
> increasing N improves the approximation in Eq. (13)

Mesh class

® a very common choice is Gauss-Legendre quadrature

from lib.mesh import *

mesh = GaulegMesh(1l6, 0.0, 1.0)
print(mesh.ps())
print(mesh.ws())
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Numerical integration



On-shell singularity

consider now Eq. (10) written out and with explicit expression for Gy
assume furthermore we have projected the equation on a single fixed partial wave:

(14)

A 2 s
. dgq® V(p,q)T(Ey +ie; q,k)
T(Ey +ie;p, k) = V(p, k +/

for convenience, we have introduced a momentum cutoff A
for e = 0, we would be integrating over the singularity at ¢ = p, which can be
isolated by writing

K +ie—q>=—(q—k—ié)(q+k), (15)

where lim;_,q is equivalent to lim.
this can now be dealt with using the principal value formula
: 1 .
lim — =PV_ Find(zx) (16)
x

e—0 ¢ T 1€

but how do we realize this with a numerical quadrature?
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Numerical principal value integration

® schematically we are dealing with an integral of the form

(A ) Ao fle) .
21_1}(1) i dqq—(k—l—ie) —PV/0 dqq_—k—l—lﬂ'f(k) (17)

where we have defined

q2 V(p7 Q)T(Eka q, k)

flg) =~ p (18)
e now, we add 0 = f(k) — f(k) in Eq. (17) and get:
A _ A
PV/0 dg f(q;_i(k) +PV/O dq% (19)

» in the first term, the numerator cancels the singularity

» the integral in the second term can be solved analytically
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Numerical principal value integration

® overall, we have arrived at

A . 00
PV /0 ag ! (q;_ g(k) +PV /0 dq% +inf(k) (20)
F(a

> to the first term, we can now apply a standard quadrature: — > w; f (¢;)
» after this step, we can split up f again because it's all finite sums!

> the second term is simply f(k )log(A k)

® cventually, we arrive at the original integral (first part of f) and a sum of three

terms multiplying f(k):

A—k ,
R = Z ” —k —|—10g(T) +im (21)

® this can be interpreted as adding an additional point gy = k£ with weight wy = R to

the original quadrature mesh {g; f\il
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Partial-wave projection

e for V spherically symmetric, it makes sense to expand the T-matrix in partial waves:

T(Ex;p,k) = Y (20 + 1)T}(Ex; p, k) P (cos 6) (22)
=0

® cosf here denotes the angle between k and p
® the [-th partial-wave projection is then given by

1
Ti(Ey;p, k) = o) /dcosHPl(cosé?)T(Ek;p,k) (23)

® this projection can be applied to the Lippmann-Schwinger equation as a whole:
Ti(Ek +ie;p, k) = Vi(p, k)

dq q* - i
-+ / 2q7rqz Vi(p, @) Go(Ey +ie; )1 (B, +ie;9,k)  (24)

® this involves the partial-wave projected potential V;(p, k)

.19



Scattering amplitude

® the scattering amplitude is now defined, for [k'| = |k| = k&, as

2 2

FX) = fi(6) = —— (K [VIg)) = —— (K|T[k) (25)
21 27

® physically, it describes the modulation of the outgoing scattered wave

® it has an expansion into partial waves analogous to the T-matrix

® the on-shell T-matrix is related to the partial-wave scattering amplitude, and also to

the partial-wave S-matrix

Si(k)—1

2ik (26)

fik) = —%Tl(Ek;k,k) -

Notes

® conventions regarding the prefactors in Eq. (26) may differ in the literature
® in the three-dimensional vector representation, the on-shell point is defined as

T(Ex;k',k) with [k'| = |k|, leaving a dependence on 6

p. 20



Scattering phase shift

unitarity of the partial-wave S-matrix, |S;(k)| = 1, implies that
Si(k) = e (27)

this defines the scattering phase shift §;(k)

the factor of two in the exponent is a (convenient) convention at this point
from this form we obtain further useful ways to express the scattering amplitude:
f (k) B e2iél(k) 1 B eld(k) gin 51(]‘3) B 1 (28)
A k "~ kot & (k) — ik
the final form in Eq. (28) is particularly useful to calculate the phase shift from the
T-matrix:
2T -1 .
d;(k) = arccot ——kT(Ek; k,k) " +1i (29)
I

the ik in the Eq. (28) is directly related to the im in the principal-value formula
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Solution of Lippmann-Schwinger equation
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Effective range expansion

the scattering amplitude can be expanded in p, and it can be shown that for the [-
th partial wave, fi(k) = O(k¥), so

filp) =

k cot 51 "k %Cznk" (30)

this implies a hierarchy of partial waves

» larger [ become subsequently important as k increases

» only S-waves (I = 0) contribute for k — 0

odd powers in Eq. (30) actually only arise from the unitarity cut, —ik

all nontrivial physics information is contained in kcot §;(k), and this quantity is
analytic in k2 ~ E

conventionally one defines the effective range expansion as
1
K2 cot 6y (k) = —— + %lf + Ok (31)
aj

from this one can infer that ¢;p = a;
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Scattering wavefunctions

from the half off-shell T-matrix, we can also obtain scattering wavefunctions in
momentum space

recall the initial form of the Lippmann-Schwinger equation, Eq. (8):
) = k) + (B — Ho +ie) L V]pl)

with V ¢(+) = T'k), we obtain directly:
k

(alyy”) = (alk) + (a| (B — Hy +ie) ' T|k) (32)

from the first term (q|k) = (27)36(®) (q — k) it is clear that this is a distribution,
not an ordinary function

the second term, with € — 0 implied, contains a smooth part as well as a pole
contribution (from the on-shell point):

2uT(Ex;q, k)

q|(Ex — Hy + i) 'T|k) =
(al( ) Tk) o ie

(33)
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Scattering wavefunctions

® altogether we have

(+) _ (F)\ _
¢k+ (@) = <Q|¢k+ )= (27T)35(3) (a—k)+ K2 — q? +ie

(34)

® Fourier-transform yields wavefunctions in configuration space:

3
(+) iker °q qr T(Ex;q,k)
r)=e  +2 / e 35
¢k ( ) /J/ (27_‘_)3 k2 _q2+i5 ( )

Notes

® this ¢1(<+) (r) is an ordinary function, but it is still not normalizable and therefore not
an element of the Hilbert space L?(IR?)

e the integral in Eq. (35) goes across the pole at q =k, so it is again defined as a
principal value

® numerically this is handled by exactly the same modified quadrature rule as before
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Scattering eigenstates

® the Schrodinger equation asserts that
(Ho + V)l = Bylwy”) (36)

® in configuration space, where prj) (r) is an ordinary function and H is a differential
operator, we can test this by looking at the ratio (I—I@bl(j))(r)/%(j) (r)
® in momentum space, the analog of this is not well defined because we are dealing

with distributions:
P (q) = (21)*6® (g — k) +- - (37)

® nor can we take matrix elements of |1/1§{+)>
® the resolution is that scattering states are really generalized eigenstates of the
Hamiltonian, in the sense that for any test function ¢(q) = (¢|q) it holds that

(O(Hy + V) [L) = By (glpl) (38)
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Eigenstate verification



Bound states

e we will formally derive later that bound states correspond to poles of the S-matrix
at negative energies

® since, schematically, S =1+ T, these poles really need to be in the T-matrix

® moreover, it can be shown that these poles are necessarily simple poles

® therefore, assuming the existence of a bound state at energy = —B, we can
parametrize the T-matrix in the vicinity of the pole as follows:

T(E;p,p') ~ Z(p—,p’) for E— —B (39)
E +

e finally, it can be shown that the residue Z(p,p’) factorizes: Z(p,p’) = B*(p)B(p')

e we call B(p) the vertex fuction associated with the bound state, and we will later
derive its relation to the momentum-space wavefunction of the bound state

® in abstract operator notation, we write Eq. (39) as

- 2%

for £ — —B (40)
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Bound-state equation

® inserting the factorized pole form into the Lippmann-Schwinger equation gives:

B*g lBép/) =V(p,p') + / C;qﬂqz V(p,9)Go(E;q) B*éqlB](Bp,)

(41)

we have used here the partial-wave projected form and dropped the subscript [
next, we multiply through with (E + B) and take the limit £ — —B

> the potential does not have any poles, so limg , gV (p,p') =0

> the free Green's function is also regular for E < 0

B 0)B0) = [ S v (p,0)Go(-B0)B (@ BR) (42

e finally, we can drop the common factor B(p') on both sides and use that both V
and Gy are real to obtain the Schrodinger equation for the vertex function:

B(p) = / d;f V(p,q)Go(—B;q)B(q) (43)
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