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A practical walk through formal scattering theory
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Review of basic concepts (D1-M1, 1h)

- Hilbert space and quantum mechanics.

- Coordinate- vs. momentum-space representations.

- The Schrödinger equation and the two body problem.

- Inhomogeneous second order differential equation.

- Complex analysis.
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Hilbert space and quantum mechanics

The concept of Hilbert space is used in quantum mechanics because, fundamentally, it 
corresponds with the way one thinks about quantum systems.

A Hilbert space is defined as:

A vectorial space with a scalar product and in which any Cauchy series (sequence) converges.

State of/information 
about a quantum 

system = vector .|Ψ⟩

Allows superposition.

Amplitude of probability 
 instead of probability, 

norm .
⟨Ψ |Φ⟩

| |Ψ | |2 = ⟨Ψ |Ψ⟩

Complete space = for a series 
 with  when 

,  so that 
 when .

|ψl⟩ | |ψl − ψm | | → 0
l, m → ∞ ∃ |ψ⟩

| |ψl − ψ | | → 0 l → ∞

Interference experiments. No “hole” in the space of 
quantum states.
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Postulates of quantum mechanics:

1) All the information on a physical system is contained in its state  defined in a Hilbert 
space , with . 

|Ψ⟩
H ⟨Ψ |Ψ⟩ = 1

2) If  and  are states of a system, the amplitude of probability for the system 

to change from  to  is .

|Ψ⟩ |Φ⟩
|Φ⟩ |Ψ⟩ a(Φ → Ψ) = ⟨Ψ |Φ⟩

The probability is given by:   . p(Φ → Ψ) = |a(Φ → Ψ) | 2 = ⟨Ψ |Φ⟩2

Hilbert space and quantum mechanics
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3) For each (physical) property A of a system, it exists an Hermitian operator  ( ) acting 
on states of the system . 

̂A ̂A† = ̂A
{ |Ψ⟩} ∈ H

4) The time evolution of a closed quantum system is given by:

Hilbert space and quantum mechanics
Postulates of quantum mechanics:

̂A |Ψn⟩ = an |Ψn⟩ ⇒ ̂A = ∑
n

an |Ψn⟩⟨Ψn |

iℏ
d |Ψ(t)⟩

dt
= Ĥ(t) |Ψ(t)⟩

This is the Schrödinger equation. See also the evolution 
operator  later.Û(t, t′￼)
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1. In a scattering experiment, one might want to know something about the position  or 
momentum  of the particles, however , which is zero everywhere 
except in  where it diverges…

|r⟩
|p⟩ ⟨r′￼|r⟩ = δ(r − r′￼) ≠ 1

r = r′￼

Hilbert space and quantum mechanics
Some troubles:

The ill formulation of QM in the Hilbert space was already known at its foundation (P. Dirac, J. 
von Neumann), see the concept of rigged Hilbert space (RHS) later.

2. In an open quantum system (OQS) i.e. a system coupled to an environment, the time 
evolution is not unitary anymore.

This aspect is important when discussing decaying resonances (loss of particle).
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Review of basic concepts (D1-M1, 1h)

- Hilbert space and quantum mechanics.

- Coordinate- vs. momentum-space representations.

- The Schrödinger equation and the two body problem.

- Inhomogeneous second order differential equation.

- Complex analysis.
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The r- and p- representations

In actual calculations, the abstract vectors (states) and operators acting in the Hilbert space 
are expressed in a given representation.

For example, one might want to know the probability  of finding a particle in a state 
 at the position . According to postulate 3) there should be an operator  that projects 

the state  on the state  associated with the position , since the position is a physical 
property.

P(ψ, r)
|ψ⟩ r ̂Pr

|ψ⟩ |r⟩ r

̂Pr |ψ⟩ = ar |r⟩

Obviously,  is a projector ( ),  is the wave function, and 
.

̂Pr = |r⟩⟨r | ̂P2
r = ̂Pr ar = ⟨r |ψ⟩ = ψ(r)

P(ψ, r) = |ψ(r) |2
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The r- and p- representations

In more details, what is meant by  is the tensor product of, for example, the vectors , 
, and  associated with the corresponding Cartesian coordinates. It can be useful to 

show that:

|r⟩ |x⟩
|y⟩ |z⟩

However, in many spherical problems (e.g. scattering exp.), spherical coordinates  
are preferred and instead the distance  is considered directly while the angular part is 
treated in the angular momentum representation using spherical harmonics 

:

r = (r, θ, ϕ)
r = |r |

⟨θ, ϕ | l, ml⟩ = Yl,ml
(θ, ϕ)

∫r
dr |r⟩⟨r | = 1 ⇒ |ψ⟩ = ∫r

dr |r⟩⟨r |ψ⟩

⟨r |ψ⟩ = ψ(r) = R(r)Yl,ml
(θ, ϕ)

with  is the Dirac distribution.⟨r |r′￼⟩ = δ3(r − r′￼)
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The r- and p- representations

It is of course possible to follow the same reasoning using the momentum  of a particle. In 
this case, one can show that: 

p

∫p
dp |p⟩⟨p | = 1

We say that the  and  vectors form continuous bases. The important point here is 
that these are different representations of the same abstract objects and must be equivalent.

{ |r⟩} { |p⟩}

How we go from one representation to another depends on each case, but for these bases 
one has the Fourier transforms:

|p⟩ =
1

(2πℏ)3/2 ∫r
d3r |r⟩e+ i

ℏ p.r |r⟩ =
1

(2πℏ)3/2 ∫p
d3p |p⟩e− i

ℏ p.r
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The Schrödinger eq. and the 2-body problem
We saw that the time evolution of a quantum system is given by the Schrödinger eq. 
(postulate 4). When considering stationary (= time independent) solutions, this equation 
becomes:

iℏ
d |Ψ(t)⟩

dt
= Ĥ(t) |Ψ(t)⟩ ⇒ Ĥ |Ψ⟩ = E |Ψ⟩

where  is the energy of the system. We usually divide solutions into two groups:  
(bound states), and  (scattering and resonant states). The special case of resonant states 
might seem odd as these are not stationary properly speaking (see quasi-stationary formalism 
later).

E E < 0
E > 0

In nuclear physics, this separation gave rise to a “traditional” divide between the studies of 
nuclear structure and reactions. Their theoretical unification is a major goal in the field.
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The Schrödinger eq. and the 2-body problem

If we want stationary solutions of the two-body problem in r- space using spherical coordinates, 
we need to solve:

( ̂T + ̂V) |Ψ⟩ = E |Ψ⟩

Where  is the kinetic energy of the system and  is the potential between the two particles.̂T ̂V

If we denote the positions (momenta) of the two particles  and  (  and ), and their 
masses  and , we can express the position and momentum of the center-of-mass (COM) of 
the system as:

r1 r2 p1 p2
m1 m2

R =
m1r1 + m2r2

m1 + m2
P = p1 + p2
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The Schrödinger eq. and the 2-body problem

Similarly, one can define the relative motion and momentum of the two particles:

r = r1 − r2 p =
m2p1 − m1p2

m1 + m2

The interest of this change of coordinates is that while the Hilbert space  cannot be 
factorized, the perfectly equivalent Hilbert space  can, and the COM part has no 
effect on the properties of the system!

ℰ(r1) ⊗ ℰ(r2)

ℰ(r) ⊗ ℰ(R)

We can rewrite the Hamiltonian as:

H =
P2

2(m1 + m2)
+

p2

2μ
+ V(r)

where  is the 
reduced mass.

μ = m1m2/(m1 + m2)

We assume a spherical potential.



K. Fossez, FRIB & ANL 15

The Schrödinger eq. and the 2-body problem

Since we can neglect the COM contribution, the two-body Hamiltonian to consider is just:

H =
p2

2μ
+ V(r)

The first term is the relative kinetic energy, which in r- space writes:

p2

2μ
= −

ℏ2

2μ
Δr

In spherical coordinates, the Laplacian operator writes:

Δr =
1
r

d2

dr2
(r⋅) +

1
r2 sin θ

d
dθ

(sin θ
d
dθ

) +
1

sin2 θ
d2

dϕ2 1
r

d2

dr2
(r⋅) =

d
dr

(r2 d ⋅
dr

)
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The Schrödinger eq. and the 2-body problem

It is then possible to show that: 

L2 = − ℏ2 ( 1
r2 sin θ

d
dθ

(sin θ
d
dθ

) +
1

sin2 θ
d2

dϕ2 )
where  is the orbital angular momentum operator associated with . We can write:L L = r ∧ p

H = −
ℏ2

2μ
1
r

d2

dr2
(r⋅) +

L2

2μ
+ V(r)

Using the fact that the eigenvectors of the  operator commute with , the solutions must be 
eigenvectors of both, and thus on can assume:

L̂2 Ĥ

Ψ(r, θ, ϕ) = Rn,l,m(r)Yl,m(θ, ϕ)
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The Schrödinger eq. and the 2-body problem

Finally, by defining the reduced radial wave function  and treating 
the angular part separately (it is independent), one obtains the standard radial stationary 
Schrödinger equation:

un,l(r) = rRn,l(r) = rRn,l,m(r)

(−
ℏ2

2μ
d2

dr2
+

ℏ2l(l + 1)
2μr2

+ V(r)) un,l(r) = En,lun,l(r)

This is the equation that one needs to solve to find the radial wave functions of bound (E<0) 
and scattering states (E>0), but also for resonances modulo some tricks and limitations.

Because it is a differential equation (inhomogeneous, 2nd order), the only thing missing are the 
boundary conditions in  and . In the integral formulation (Lippmann-Schwinger) 
those are already included (see later).

r = 0 r → ∞
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- Inhomogeneous second order differential equation.
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Inhomogeneous 2nd order differential eq.
There are a few “methods” to solve the following type of equation and find :y(x)

y′￼′￼(x) + b(x)y′￼(x) + c(x)y(x) = f(x)

Typically, the “variation of parameters” method, also sometimes called the “constant variable” 
method (bad name), is the most reliable approach. Essentially, it reduces a second order 
differential equation into a system of two first order differential equations.

Another way to think about this method is to say rather loosely that the general solution is the 
sum of the solution  to the associated homogeneous equation (i.e. ) and a 
particular solution  to the inhomogeneous equation.

y0(x) f(x) = 0
yp(x)

It is thus clear that this method only works if one can get our hands on  at the very least. 
All other approaches involve some form of guessing.

y0(x)
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Inhomogeneous 2nd order differential eq.

The first step is to write the general solution for both the inhomogeneous and homogeneous 
equations:

y0(x) = c1y1(x) + c2y2(x)

y(x) = c1(x)y1(x) + c2(x)y2(x)

where in the first eq.  are constants, while in the second case they are functions. There are 
two components  because it is a second order equation.

c1,2
y1,2(x)
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Inhomogeneous 2nd order differential eq.

Then, one looks at the first derivatives:

Since in the limit  one must have , it is easy to see that one must have:f(x) → 0 y′￼(x) → y′￼0(x)

y′￼0(x) = c1y′￼1(x) + c2y′￼2(x)

y′￼(x) = c′￼1(x)y1(x) + c1(x)y′￼1(x) + c′￼2(x)y2(x) + c2(x)y′￼2(x)

c′￼1(x)y1(x) + c′￼2(x)y2(x) = 0

This condition can be seen as a continuity condition.
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Inhomogeneous 2nd order differential eq.

Then, one looks at the second derivative:

The inhomogeneous equation then writes:

y′￼′￼(x) = c′￼1(x)y′￼1(x) + c1(x)y′￼′￼1(x) + c′￼2(x)y′￼2(x) + c2(x)y′￼′￼2(x)

c′￼1(x)y′￼1(x) + c1(x)y′￼′￼1(x) + c′￼2(x)y′￼2(x) + c2(x)y′￼′￼2(x)
+b(x)[c1(x)y′￼1(x) + c2(x)y′￼2(x)]
+c(x)[c1(x)y1(x) + c2(x)y2(x)] = f(x)
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Inhomogeneous 2nd order differential eq.

It can be rearranged into:

c′￼1(x)y′￼1(x) + c′￼2(x)y′￼2(x)
+c1(x)[y′￼′￼1(x) + b(x)y′￼1(x) + c(x)y1(x)]
+c2(x)[y′￼′￼2(x) + b(x)y′￼2(x) + c(x)y2(x)] = f(x)

but since  are solutions of the homogeneous equation, one is left with:y1,2(x)

c′￼1(x)y′￼1(x) + c′￼2(x)y′￼2(x) = f(x)

This gives the second condition to solve an inhomogeneous second order differential equation.
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Inhomogeneous 2nd order differential eq.

We can thus say that solving:

c′￼1(x)y′￼1(x) + c′￼2(x)y′￼2(x) = f(x)

y′￼′￼(x) + b(x)y′￼(x) + c(x)y(x) = f(x)

Is the same as solving:

c′￼1(x)y1(x) + c′￼2(x)y2(x) = 0

We will use this method to solve the Schrödinger equation for the two-body problem for any 
potential and at any energy. The functions  will be the Jost functions.c1,2(x)

y(x) = c1(x)y1(x) + c2(x)y2(x)
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Inhomogeneous 2nd order differential eq.

Warm-up analytical example: y′￼′￼− 5y′￼+ 4y = e4x

r1,2 =
−(−5) ± (−5)2 − 4 × 1 × 4

2 × 1
= 4,1

y(x) = C1(x)e4x + C2(x)ex

C′￼1(x)e4x + C′￼2(x)ex = 0
C′￼1(x)(e4x)′￼+ C′￼2(x)(ex)′￼ = e4x

C′￼2(x) = 0

C′￼1(x) =
1
3

C2(x) = C2

C1(x) =
x
3

+ a

y(x) = ( x
3

+ a) e4x + C2ex

- Roots of the associated polynom:

- Solution of the form:

- Conditions:

Finally:
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Complex analysis

It is not a secret that quantum mechanics makes use of complex numbers, but scattering theory 
in particular uses a fair amount of complex analysis.

As a reminder, the complex plane is traditionally divided into four quadrants:

III

III IV

Real axis

Imaginary axis
Complex numbers are written: 

 with  and  
real, or  with  real in 
polar coordinates.

z = a + ib i2 = − 1 a, b
z = |z |eiθ θ

Also: eiθ = cos θ + i sin θ

z = a + ib

a

b
θ

Multiplying by a complex number = rotation + elongation.
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Complex analysis
The analytical continuation of a real fonction in the complex plane is, loosely speaking, the 
extension of the domain of the fonction to complex numbers, sometimes by redefining the 
function a little bit.

The typical (easy) example is the exponential  defined on the whole real axis. By using its 
expression as a series:

ex

ex =
∞

∑
n=0

xn

n!

and by replacing  by a complex number , one can evaluate the exponential function in the 
complex plane. In practice, it is not always that simple.

x z

The “result” of a complex function can also be 
represented by a Riemann surface. Example: .f(z) = z
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Complex analysis
A pole of order  of an analytical function  is an isolated point  where the function is 
singular and behaves as  with  positive.

n f(z) z0
1/zn n

One can show that around a pole, an analytical function  can be written uniquely as a 
Laurent series:

f(z)

f(z) =
∞

∑
n=1

bn

(z − z0)n +
∞

∑
n=0

an(z − z0)
n

The residue of  at the pole  is simply .f(z) z0 b1

Res
z=z0

( f ) = b1
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Complex analysis

Cauchy’s integral theorem. If a function  is analytical on and inside a closed contour :f(z) γ

∮γ
f(z)dz = 2πi

n

∑
k=1

Res
z=zk

( f )

∮γ
f(z)dz = 0

However, if the function has  poles  inside the contour, Cauchy’s residue theorem gives for  
counter-clockwise:

n zk γ

Res
z=zk

( f ) =
1

2πi ∮γk

f(z)dz

where  is a contour around  only. For a simple pole (order 1)  :γk zk zk
Res
z=zk

( f ) = lim
z→zk

(z − zk)f(z)

Sometimes residues can 
be calculated like this.


