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Newton basis (D3-M1, 30 min)

An interesting consequence of the RHS is that it justifies a completeness relation involving
Gamow states called the Berggren basis.

First, we remind that it was shown with some effort that it is possible to form a complete basis
using bound and scattering states called the Newton basis:

o0

S ) utk)] + | ak u)uci)| = 1

i=(b) 0

where the sum goes over all the bound states k; = + i | k;| of a given potential, and the integral
goes over all its scattering states k = | k]|.

Already this formula makes use of scattering states which are not in the Hilbert space, but at

least all the states have real energies.
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Berggren basis

However, if one tries to expand a resonance wave function using only real energy wave

functions, it is clear that it will be impossible to have the imaginary part necessary to describe
decay in the quasi-stationary formalism.

Can we extend the Newton basis by analytical continuation as to include explicitly Gamow
states? This question led T. Berggren to formulate the following basis:

> ut) i) + | dkluto)ado] =

i=(b,r) L+

where the sum goes over all the bound states k; = 4+ i| k;| and selected resonances, and the

integral goes along a path L™ in the lower-half of the complex momentum plane starting at
k = 0 and surrounding the selected resonances before extending to infinity.
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Berggren basis

Here is the schematic method used by T. Berggren:

T. Berggren, Nucl. Phys. A 109 265 (1968) A much simpler way to obtain the same

result is to simply note that:

S(=0)

J dic | ()Y (@) | —J dic | (k)Y (u ()|
L+

0

— Qi Z 1}32%[ | u(k))(ick) | ]

Cauchy’s residue
theorem

> Re(k)

Then, one needs to calculate the residues.

.
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Berggren basis

Using the normalization of scattering states and the S-matrix equality:

CHk) I (k)

1
CHk)Cy (k) = —

2T Sk =

oo | 1 IF®
Cir (k) _\/ 27 JE(k)

The asymptotic wave function is thus:

k. r) = 1 J; (k) ) + 1 Jy (k) ()
U T 2w drk) L
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It follows that:




Berggren basis

When approaching a pole k — k, one has J;"(k) — 0 and thus:

1 J; (k)
27 J}H(k)

| (ko)) (i) | ~ [ u™(k)) (i (k) |

Using the Taylor expansion of the Jost function and the formula for its derivative:

0

— i]l‘(kp)J' dr[u*(k,, )]
0

dJ (k) dJ (k)

(k) ~ (k —
O E= =4 dk

=k

n

one obtains:
L Jiy )Yt (k) |

k))(u(k)| ~
| u( )><I/t( ) | 27 (k — kp) iJl_(kp) JOOO dr [ul+(k ) 7”)]2
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Berggren basis

Since by definition a normalized pole state is just:

- B
we have: , ,

UO)) | ~ = e L)) k)
Clearly:

]
lim (k — k) | u(k)){i(k) | ~ - | u(k,)){i(k,) | = Res[ | u(k)){i(k)| ]
k—k, 27l k=k,
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Berggren basis

Using the residue obtained, the Berggren basis follows immediately since the contour gives:

rodk u(k)) (u(k) | = [

0 Lt

dk | u(k))(ii(k) | — 2zi ) Res[ | u(k))(ii(k)|]
~ k=k,

= J dk |u(k)) (k) | + ) |u(k,)) (k) |
Lt r

hen we just add the sum over the bound states, and we finally have a single particle basis
including bound states, resonances, and scattering states.
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Berggren basis

Here, we will use the Berggren basis as an example of method to describe many-body

resonances, but there are other ways to do just that.

For instance, one could solve the many-body Schrodinger equation in momentum space, use
the unitorm complex-scaling method, or calculate phase-shifts from the resonating group
method to extract resonance information.

In practical applications, the contour L™ of scattering states can be discretized by using a

quadrature method for the integral:

[ dk | u(o)atk) | + Y Tulk ) ak) | ~ . [ulk) )ik, |
L+ y I
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Berggren basis

In practical applications, the contour L™ of scattering states can be discretized by using a

quadrature method for the integral:

Im (k) L dk | u(k))iik) | + Z | u(k,)ii(k,) | ~ Z | u(ky)){iick;)|

One can then perform many-body calculations

decaying in the quasi-stationary framework.
resonances

bound states

Re(k) The resulting physical many-body energies are
complex and satisty:

\ discretized continuum r

In momentum space E=E —i—

2
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Proton number, Z

K. Fossez, FRIB & ANL

| ow-energy nuclear theory: challenges

Limits of nuclear stability: How many nuclei can exist?

120 :
. Stable nuclei
Known nuclei
-.-|_| Drip line
g0 @ S,,=2MevV  Z=82
- SV-min
40 - ~3000 known isotopes (288 stable) -
< =28t . 5 ~7000 total?
£ = 20_::§="' > unbound | : @ :
/(ﬁza ng N=30 | : J. Erler et al., Nature 486, 509 (2012)
0 E s l= N 1 1 1 te=- -l- - 1 | 1 1 | 1 1 :
0 40 80 120 160 200 240 280

Neutron number, N

Physics ot exotic nuclei.
C. Johnson and K. Launey (eds.), J. Phys. G 47 123001 (2020)
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Emergent properties:
What is their origin?

Shell structure
Deformation
Rotational motion

Clustering

alos

Exotic decay modes

Resonances



| ow-energy nuclear theory: challenges

Exotic decay modes. Halo structures

"Li

K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007). 1 ;agni)hata et al., Phys. Rev. Lett 55, 2676
1985
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Gamow shell model
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First many-body method using the Berggren basis. /
N. Michel et al., J. Phys, G 36, 013101 (2009) 0fr — 00000066 8 28]
e Configuration interaction method: ) = ) ¢;|SD)
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Other related approaches

The Berggren basis was also used in:

- The density matrix renormalization group method.
- The coupled-cluster and in-medium similarity renormalization group methods.

- The Jacobi coupled-channel three-body method and particle-plus-rotor model.

In all these methods, the same difficulties are present:

- ldentitication of physical states, i.e. poles of the many-body S-matrix.

- Reconstruction of the many-body asymptotic (width) from the single-particle states.

This is why it is important to study resonances using other methods as well (reactions, k-space...).
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Nuclear forces

Fixing models of nuclear forces is another important use of scattering theory in modern research.

. as At AT A A aS | I \ATATATA A
H = Z(z\T\])aT o Z(zJ\V \kl)cﬁ Talak an Z (z]k\V N\lmn)aj ; Zanama,+...
ijkl ijkimn
kinetic energy 2-body 3-body
300 [T
he specific form of nuclear forces is unknown as it | 'S, channel -
would require to solve the non-perturbative quantum 200 |
chromodynamics equation at low energy, but this is not = epuisive L : o
yet feasible. = 100 core S
o | | |
Instead, a potential between two (or more) nucleons is o) E——
used to model their interaction: this is a scattering [ CD Bomn
problem. 100 TAV1S
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Nuclear forces \

Nuclear potentials can be guessed or derived from a set of principles. w
Virtual
R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011) A
w
NN 3N
LLO Then, using a partial wave expansion, the
(Q/A,)° >< phase shifts associated with the scattering
of two interacting nucleons can be
expressed and adjusted to experiment.
NLO
QO/A,)? , .
(Q/Ay) [[ H‘:x:' This process guarantees that the resulting
Sl potential will have the desired properties
up to some energy.
+--@--4
NNLO ]
R ¢ 1o
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Nuclear forces

- | %DDDU
54} H N EEEEE E W
2020 . ToS Lo
S0F Z=50 =--=---= *lllllllllll-z-E!:ED%-%-D-I--I--I-#--I--I-l-l-l--l--l---
- : N EEEE :
46} : | gzz |
- N EENEE =
42} i EEEEN .
- =40 -------- LT T D I'l=-l-l--I--l--l--l--l--l-l ---------------- R L CEE T,
gl EEEEEEEEY = mem '
EEEEEEEEE H
. NENEEEEEEEE H N EEE N
EEEEEEEEEE B .
34} IIIIIIIIIII EEE B
EEEEEEEEEEE B
. EEEEEEEEEEEEN ,
30} , ANmEEEEEmE 5 N=82
N - Z=28 =sceecnannaann ill====. li==iH=H====Illllllllillllllll-l"I"I"I"I-i-I--
56 EEpEEEEEEE Illllllllll:llllllllll
| ol
- . EEEAEEEEEEEEEEEEEEEEEEEN NN
- EEEEENEEEEEEENEEEEEEEEEEEEEEEEEEE
22} : lllllllllliiiiilllllllllll-llllllllli E E EEEERN
| 7200 b R T s e e R - -
: IIIIIIIII!I!IIIIIII EEEEEEEEEEEEEEEE : 0
18} s llllllll;l=l§lllll EEEEEEEEEEEpEEEE ; 2010
I ' EEEEEEEEEEE EENEEEEENNNNNNEEENANEE :
T N=50 02012
14} l=======iEE====lllllllil
! R 1 @ 2014
EEEEEEEEEEEEEEEEEENE
10} EEEEEEEEEEEEEEEEEEENE
AN = 2016
- = e e e O
¢l ugmEeEEeEmEsEmmmmME, N-28 = 2018
EEEE - :
- ERSSE R EEEEREE =20 Credit: H. Hergert, MSU m 2020

K. Fossez, FRIB & ANL

N

17



