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A practical walk through formal scattering theory
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Newton basis (D3-M1, 30 min)
An interesting consequence of the RHS is that it justifies a completeness relation involving 
Gamow states called the Berggren basis.

First, we remind that it was shown with some effort that it is possible to form a complete basis 
using bound and scattering states called the Newton basis:

∑
i=(b)

|u(ki)⟩⟨u(ki) | + ∫
∞

0
dk |u(k)⟩⟨u(k) | = 1̂

where the sum goes over all the bound states  of a given potential, and the integral 
goes over all its scattering states .

ki = + i |ki |
k = |k |

Already this formula makes use of scattering states which are not in the Hilbert space, but at 
least all the states have real energies.
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Berggren basis
However, if one tries to expand a resonance wave function using only real energy wave 
functions, it is clear that it will be impossible to have the imaginary part necessary to describe 
decay in the quasi-stationary formalism.

∑
i=(b,r)

|u(ki)⟩⟨ũ(ki) | + ∫L+

dk |u(k)⟩⟨ũ(k) | = 1̂

Can we extend the Newton basis by analytical continuation as to include explicitly Gamow 
states? This question led T. Berggren to formulate the following basis:

where the sum goes over all the bound states  and selected resonances, and the 
integral goes along a path  in the lower-half of the complex momentum plane starting at 

 and surrounding the selected resonances before extending to infinity.

ki = + i |ki |
L+

k = 0
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Here is the schematic method used by T. Berggren:

Cauchy’s residue 
theorem

T. Berggren, Nucl. Phys. A 109 265 (1968) A much simpler way to obtain the same 
result is to simply note that:

∫L+

dk |u(k)⟩⟨ũ(k) | − ∫
∞

0
dk |u(k)⟩⟨u(k) |

= 2πi∑
r

Res
k=kr

[ |u(k)⟩⟨ũ(k) | ]

Then, one needs to calculate the residues.

Berggren basis
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Using the normalization of scattering states and the S-matrix equality:

C+
l (k)C−

l (k) =
1

2π
Sl(k) = −

C+
l (k)

C−
l (k)

=
J−

l (k)
J+

l (k)

It follows that:

C±
l (k) = −

1
2π

J∓
l (k)

J±
l (k)

The asymptotic wave function is thus:

ul(k, r) = −
1

2π
J−

l (k)
J+

l (k)
u+

l (k, r) + −
1

2π
J−

l (k)
J+

l (k)
u−

l (k, r)

Berggren basis
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When approaching a pole , one has  and thus:k → kp J+
l (k) → 0

|u(k)⟩⟨ũ(k) | ∼ −
1

2π
J−

l (k)
J+

l (k)
|u+(k)⟩⟨ũ+(k) |

J+
l (k) ≈ (k − kp)

dJ+
l (k)
dk

k=kn

Using the Taylor expansion of the Jost function and the formula for its derivative:

dJ+
l (k)
dk

k=kn

= iJ−
l (kp)∫

∞

0
dr [u+

l (kp, r)]2

one obtains:

|u(k)⟩⟨ũ(k) | ∼ −
1

2π
J−

l (kp)
(k − kp)

|u+(kp)⟩⟨ũ+(kp) |

iJ−
l (kp) ∫ ∞

0
dr [u+

l (kp, r)]2

Berggren basis
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Since by definition a normalized pole state is just:

|u(k)⟩⟨ũ(k) | ∼ −
1

2πi
1

k − kp
|u(kp)⟩⟨ũ(kp) |

|u(kp)⟩⟨ũ(kp) | =
|u+(kp)⟩⟨ũ+(kp) |

∫ ∞
0

dr [u+
l (kp, r)]2

we have:

Berggren basis

Clearly:

lim
k→kp

(k − kp) |u(k)⟩⟨ũ(k) | ∼ −
1

2πi
|u(kp)⟩⟨ũ(kp) | = Res

k=kp

[ |u(k)⟩⟨ũ(k) | ]
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Using the residue obtained, the Berggren basis follows immediately since the contour gives:

Berggren basis

∫
∞

0
dk |u(k)⟩⟨u(k) | = ∫L+

dk |u(k)⟩⟨ũ(k) | − 2πi∑
r

Res
k=kr

[ |u(k)⟩⟨ũ(k) | ]

= ∫L+

dk |u(k)⟩⟨ũ(k) | + ∑
r

|u(kr)⟩⟨ũ(kr) |

Then we just add the sum over the bound states, and we finally have a single particle basis 
including bound states, resonances, and scattering states.
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Here, we will use the Berggren basis as an example of method to describe many-body 
resonances, but there are other ways to do just that.

For instance, one could solve the many-body Schrödinger equation in momentum space, use 
the uniform complex-scaling method, or calculate phase-shifts from the resonating group 
method to extract resonance information.

∫L+

dk |u(k)⟩⟨ũ(k) | + ∑
r

|u(kr)⟩⟨ũ(kr) | ≈ ∑
i

|u(ki)⟩⟨ũ(ki) |

In practical applications, the contour  of scattering states can be discretized by using a 
quadrature method for the integral:

L+

Berggren basis
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One can then perform many-body calculations 
in the quasi-stationary framework.

The resulting physical many-body energies are 
complex and satisfy:

E = Er − i
Γ
2

Berggren basis

∫L+

dk |u(k)⟩⟨ũ(k) | + ∑
r

|u(kr)⟩⟨ũ(kr) | ≈ ∑
i

|u(ki)⟩⟨ũ(ki) |

In practical applications, the contour  of scattering states can be discretized by using a 
quadrature method for the integral:

L+
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Low-energy nuclear theory: challenges

J. Erler et al., Nature 486, 509 (2012) 

• Shell structure

• Deformation

• Rotational motion

• Clustering

• Halos

• Exotic decay modes

• Resonances

~3000 known isotopes (288 stable)

~7000 total?

Emergent properties: 
What is their origin?

Limits of nuclear stability: How many nuclei can exist?

Physics of exotic nuclei.
C. Johnson and K. Launey (eds.), J. Phys. G 47 123001 (2020)

particle bound

unbound
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(66%), argon (32%), nitrogen (1%), and methane (1%).
The primary ionization electrons drift in a uniform electric
field, with a velocity of 0:97 cm=!s, towards a double-
stage amplification structure formed by parallel-mesh flat
electrodes. In the second multiplication stage, emission of
UV photons occurs. After conversion of their wavelength
to the visual range by a thin luminescent foil, these photons
are recorded by a CCD camera and by a photomultiplier
tube (PMT). The camera image represents the projection of
particles’ tracks on the luminescent foil. The signals from
the PMT are digitized with a 50 MHz sampling frequency
providing information on the drift-time which is related to
the position along the axis normal to the image plane. By
changing the potential of an auxiliary gating electrode, the
chamber can be switched between a low sensitivity mode
in which tracks of highly ionizing heavy ions can be
recorded, and a high sensitivity mode used to detect light
particles emitted during the decay. The pioneering research
on gaseous detectors with position sensitive optical readout
was performed by Charpak et al. [18]. To the best of our
knowledge the detector described here represents the first
application of this idea to nuclear physics studies.

The experiment was performed at the National
Superconducting Cyclotron Laboratory at Michigan State
University, East Lansing, USA. Ions of 45Fe were produced
in the reaction of a 58Ni beam at 161 MeV=nucleon, with
average intensity of 15 pnA, impinging on a 800 mg=cm2

thick natural nickel target. The 45Fe fragments were sepa-
rated using the A1900 fragment separator [19] and identi-
fied in flight by using time-of-flight (TOF) and energy-loss
(!E) information for each ion. The TOF was measured
between a plastic scintillator located in the middle focal
plane of the A1900 separator and a thin silicon detector
mounted at the end of the beam line. The silicon detector
also provided the !E signal. Identified ions were slowed
down in an aluminum foil and stopped inside the OTPC.
The acquisition system was triggered selectively when a
45Fe ion was identified. In this way, the corresponding
CCD image and the PMT time profile could be assigned
unambiguously to individual ions. The trigger signal was
also used to switch the OTPC to the high sensitivity mode
and to turn the beam off for a period of about 75 ms to
prevent other ions from entering the detector while waiting
for the decay of the stopped ion.

An example of a recorded radioactive decay event of
45Fe is presented in Fig. 1. A track of 45Fe ion entering the
chamber from left can be seen on the CCD image (top).
After 535 !s, two short and bright tracks occurred which
originated from the end of the 45Fe track. Their length,
inferred from the image and from the time distribution of
the total light intensity measured by the PMT (bottom),
agrees with the value of 2.3 cm expected for protons of
about 0.6 MeV in the counting gas of the OTPC. The CCD
image shown in Fig. 1, supported by the PMT time profile,
represents direct and clear proof of the occurrence of the
2p radioactivity in 45Fe.

Apart from the 2p decay leading to 43Cr, the nucleus
45Fe can also decay by "! transitions to excited states of
45Mn. The decay energy for this disintegration mode is
predicted to be about 18.7 MeV [6] and in consequence
many decay channels involving "-delayed particle emis-
sion are possible. In fact, it is expected that 100% of the"!

decays of 45Fe are followed by charged particle emission
and that these particles have energies large enough to
escape the active volume of the OTPC in most cases [6].
Such decay channels, including "-delayed 2p and
"-delayed 3p emission, have also been observed and will
be published separately [20].

In the course of the 9-day experiment, 125 decays of
45Fe were observed, 87 of them proceeding by the direct 2p
emission and 38 by " decay followed by proton emission.

533 535 537
0

2

4

6

8

In
te

ns
ity

 (
a.

u.
)

Time (µs)

ϑ1 = 110° ϑ2 = 70°

FIG. 1 (color online). An example of a registered two-proton
decay event of 45Fe. Top: an image recorded by the CCD camera
in a 25 ms exposure. A track of a 45Fe ion entering the chamber
from left is seen. The two bright, short tracks are protons of
approximately 0.6 MeV, emitted 535 !s after the implantation.
Bottom: a part of the time profile of the total light intensity
measured by the PMT (histogram) showing in detail the 2p
emission. Lines show results of the reconstruction procedure
yielding the emission angles # with respect to the axis normal to
the image.

PRL 99, 192501 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
9 NOVEMBER 2007

192501-2

Exotic decay modes. Halo structures

K. Miernik et al., Phys. Rev. Lett. 99, 192501 (2007). 

45Fe

I. Tanihata et al., Phys. Rev. Lett 55, 2676 
(1985) 

Low-energy nuclear theory: challenges
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Gamow shell model

Ĥ |Ψ⟩ = Ẽ |Ψ⟩• Complex-symmetric Hamiltonian matrix.

|Ψ⟩ = ∑
i

ci |SDi⟩

First many-body method using the Berggren basis.

N. Michel et al., J. Phys, G 36, 013101 (2009)

• Configuration interaction method: 
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Other related approaches
The Berggren basis was also used in: 

- The density matrix renormalization group method.

- The coupled-cluster and in-medium similarity renormalization group methods.

- The Jacobi coupled-channel three-body method and particle-plus-rotor model.

In all these methods, the same difficulties are present:

- Identification of physical states, i.e. poles of the many-body S-matrix.

- Reconstruction of the many-body asymptotic (width) from the single-particle states.

This is why it is important to study resonances using other methods as well (reactions, k-space…).
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Nuclear forces
Fixing models of nuclear forces is another important use of scattering theory in modern research.

Ĥ = ∑
ij

⟨i |T | j⟩ ̂a†
i ̂aj +

1
(2!)2 ∑

ijkl

⟨ij |Vas
NN |kl⟩ ̂a†

i ̂a†
j ̂al ̂ak +

1
(3!)2 ∑

ijklmn

⟨ijk |Vas
NNN | lmn⟩ ̂a†

i ̂a†
j ̂a†

k ̂an ̂am ̂al + . . .

kinetic energy 2-body 3-body

The specific form of nuclear forces is unknown as it 
would require to solve the non-perturbative quantum 
chromodynamics equation at low energy, but this is not 
yet feasible.

Instead, a potential between two (or more) nucleons is 
used to model their interaction: this is a scattering 
problem.



K. Fossez, FRIB & ANL 16

R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011)

Then, using a partial wave expansion, the 
phase shifts associated with the scattering 
of two interacting nucleons can be 
expressed and adjusted to experiment.

Nuclear forces
Nuclear potentials can be guessed or derived from a set of principles.

This process guarantees that the resulting 
potential will have the desired properties 
up to some energy.
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Credit: H. Hergert, MSU

Nuclear forces


