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Virtual states
as mentioned before, complex momenta  also yield negative energies

S-matrix poles at such positions in the complex  plane are called virtual states (or

antibound states) 
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as a function of energy, the S-matrix has multiple branches: , 
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bound states are poles of  for negative , ► (E)S I
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virtual (antibound) states are poles of  for negative , ► (E)S II
l

E k = −iκ

other poles of  are resonances► (E)S II
l
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Leonid 2, via Wikimedia commons

Riemann sheets
recall that for ,  can equally well be defined as  or 

these are the two branches of the square root function

typically, the principal branch is taken to be the positive solution

both branches can be combined by defining  on a Riemann surface
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in this case, it is built out of two Riemann sheets► 

these are connected at the branch cut, chosen along the negative real axis► 
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Analytic structure of the S-matrix
from the square-root structure it follows that the two sheets of the S-matrix as a

function  correspond to the upper and lower half planes as a function of 

Im

Re

k

bound states

scattering

resonances

virtual states

E, I

scattering

bound states

E, II

resonancesvirtual states

Im

Im

Re

Re

E k

p. 4



calculation by Nuwan Yapa

Example
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Riemann sheets of the T-matrix
consider now the (partial-wave projected) Lippmann-Schwinger equation in

momentum space:

we have written this in full off-shell form, with the energy  a free parameter not

associated with either  or 

just like the S-matrix, the T-matrix has two Riemann sheets, which in the following

we denote by  and , and Eq.  is the equation for 

that means, even if we choose  complex, we do not leave the first sheet

  

How then can we obtain ?

T (E;p, ) = V (p, ) + V (p, q) (E; q)T (E; q, )p′ p′ ∫
∞
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Contour rotation
recall that the scattering cut connects the first and second Riemann sheets

let us now deform this integration contour by rotating it into the lower half plane 
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the contribution from the arc can be neglected if both  and  fall

off sufficiently fast for 

it runs along the positive real axis► 

this is precisely where we integrate in the Lippmann-Schwinger equation: ► dq∫ ∞
0

for scattering calculations, we use  to approach the upper rim of the cut► iε → 0

V (p, q) T (E; q, )p′

q → ∞
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Analytic continuation
to rotate the contour in the first place, we need to assume of course that the

potential is actually defined for complex momenta

after rotating the contour, we can pick  with  such that 

and write down the Lippmann-Schwinger equation on the second sheet as

for short-range local potentials this is just fine because the integral

converges for all  and 

► 

(p,k) = 4π dr (pr)V (r) (kr)Vl ∫
∞

0
r2jl jl

p k

so-called separable potentials, i.e., potentials that factorize as

are also no problem provided the "form factor"  is an analytic function of 

► 

V (p,k) ∼ g(p)g(k)

g(p) p

E =q0 2μE
− −−−

√ −arg < ϕq0

(E;p, ) = V (p, ) + V (p, q) (E; q) (E; q, )T II p′ p′ ∫
Cϕ

dq q2

2π2
G0 T II p′ (2)
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for a more detailed discussion, see W. Glöckle, The Quantum Mechanical Few-Body Problem, Springer, 1983

Rotation reversed
the contour-rotation method is strikingly simple, but it introduces the angle  as an

additional parameter in the calculation

note now that the free Green's function for has a pole at :
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if we want to rotate the contour back to the real axis, we will sweep across this pole

this means that we will pick up a residue contribution

ϕ

q = =q0 2μE
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(E; q) =G0
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−q2
0 q2

(3)
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Full circle
let us retrace our steps so far:

1. without specifying the energy explicitly, we rotated the  integral

2. we then chose the energy  in the accessible part of the second sheet

3. after fixing , we rotate the integral back and pick up a residue

this leads to the following equation:

for the new amplitude  we need a supplementary equation:

dq

E

E

(E;p, ) = V (p, ) + V (p, q) (E; q) (E; q, )T II p′ p′ ∫
∞

0

dq q2

2π2
G0 T II p′

− V (p, ) (E; , )
iμq0

π
q0 T II q0 p′ (4)

(E; ,p)T II q0

(E; , ) = V ( , ) + V ( , q) (E; q) (E; q, )T II q0 p′ q0 p′ ∫
∞

0

dq q2

2π2
q0 G0 T II p′

− V ( , ) (E; , )
iμq0

π
q0 q0 T II q0 p′ (5)
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Second-sheet kernel
in numerical calculations, where we discretize the  integral, we can combine the

two equations  and  by adding  as an extra mesh point

this is similar to our numerical treatment of the principal-value integral that we

encountered for scattering calculations

a yet simpler equation can be obtained by eliminating  explicitly:

with

this modified kernel for the second sheet allows us to search for virtual states

and resonances

note that in all these equations, we have 

dq
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(E;p, ) = ( ;p, ) + ( ;p, q) (E; q) (E; q, ) ,T II p′ V
~
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0

dq q2

2π2
V
~
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( ;p, ) = V (p, ) − V (p, ) V ( , )V
~
q0 p′ p′ q0

iμ /πq0

1 + iμ V ( , )/πq0 q0 q0
q0 p′ (7)

=q0 2μE
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Second-sheet S-matrix poles
in order to actually search for virtual states and resonances, we need to identify

poles of the S-matrix on the second sheet

as for bound states, the poles actually are poles of the T-matrix

to find these poles, we proceed exactly as we did for bound states

assuming the existence of simple pole at energy , the second-sheet T-matrix

factorizes at the pole position:

we use  here to denote the vertex function

inserting this into the second-sheet Lippmann-Schwinger equation  yields the

homogeneous equation

where now 

E∗

(E) ∼   for  E →T II |R⟩⟨R|

E − E∗
E∗ (8)

R(p) = ⟨p|R⟩

(6)

R(p) = ∫ ( ; p, q) ( ; q)R(q) ,
dq q2

2π2
V
~

q0 G0 E∗ (9)

=q0 2μE∗− −−−−
√
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